咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An <i>O(n<SUP>2</SUP>)</i> sel... 收藏

An <i>O(n<SUP>2</SUP>)</i> self-stabilizing algorithm for computing bridge-connected components

$O (n ^ 2 )$ 为计算连接桥的部件的自我稳定的算法

作     者:Chaudhuri, P 

作者机构:Kuwait Univ Dept Elect & Comp Engn Safat Kuwait 

出 版 物:《COMPUTING》 (计算)

年 卷 期:1999年第62卷第1期

页      面:55-67页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:distributed system self-stabilizing algorithm graphs bridge-connected components time complexity 

摘      要:This paper presents a self-stabilizing algorithm that finds the bridge-connected components of a connected undirected graph on an asynchronous distributed or network model of computation. An edge of a graph is a bridge if its removal disconnects the graph. The bridge-connected components problem consists of finding the maximal connected subgraphs (components) of the given graph such that none of the components contains a bridge. The output of the algorithm is available in a distributed manner in the sense that, upon termination of the algorithm, each node of the graph knows its component number: the component number is a representative node number which uniquely identifies a bridge-connected component. It has been proved that the algorithm is correct and requires O(n(2)) time if the depth-first search spanning tree of the graph is known, or else it requites O(n(2) + n . d . Delta) time, where n is the number of nodes, d is the graph diameter, and a is an upper bound on the degree of a node.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分