咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Handwritten digit recognition ... 收藏

Handwritten digit recognition by a mixture of local principal component analysis

由本地主要部件分析的混合物的手写的位识别

作     者:Zhang, BL Fu, MY Yan, H 

作者机构:Univ Sydney Dept Elect Engn Sydney NSW 2006 Australia Univ Newcastle Dept Elect & Comp Engn Newcastle NSW 2308 Australia 

出 版 物:《NEURAL PROCESSING LETTERS》 (神经处理通讯)

年 卷 期:1998年第8卷第3期

页      面:241-251页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:neural networks mixture of principal component analysis handwritten digit recognition 

摘      要:Mixture of local principal component analysis (PCA) has attracted attention due to a number of benefits over global PCA. The performance of a mixture model usually depends on the data partition and local linear fitting. In this paper, we propose a mixture model which has the properties of optimal data partition and robust local fitting. Data partition is realized by a soft competition algorithm called neural gas and robust local linear fitting is approached by a nonlinear extension of PCA learning algorithm. Based on this mixture model, we describe a modular classification scheme for handwritten digit recognition, in which each module or network models the manifold of one of ten digit classes. Experiments demonstrate a very high recognition rate.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分