版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:上海交通大学微纳科学技术研究院上海200240 上海交通大学微米/纳米加工技术国家级重点实验室上海200240 上海交通大学薄膜与微细技术教育部重点实验室上海200240
出 版 物:《纳米技术与精密工程》 (Nanotechnology and Precision Engineering)
年 卷 期:2011年第9卷第5期
页 面:422-426页
核心收录:
学科分类:08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器]
基 金:国家自然科学基金资助项目(60876082) 上海市科委纳米专项基金资助项目(0852nm06600) 上海市教委曙光计划资助项目(08SG13) 航空科学基金资助项目(2008ZE57019)
摘 要:在神经工程中,微电极阵列是神经系统与外界电子电路的接口,其性能决定了整个神经系统的信号采集和刺激的效果.提出了一种基于Parylene的半球形柔性生物微电极阵列.在微电极的制备过程中,使用了光刻胶热熔技术和MEMS技术.半球形形貌的微电极有利于形成和神经组织的良好接触,并且相比同底面积的平板电极,表面积增加为2倍,这有利于降低界面阻抗,降低系统功耗.使用化学气相沉积法沉积Parylene C薄膜作为微电极的封装材料,它具有良好的生物相容性和柔性,可以降低对神经组织的损害.实验结果表明,与此半球形微电极底面积大1.3倍的平板电极相比,半球形微电极的界面阻抗下降了55%,并且界面阻抗随着微电极顶部开口直径的变化而变化.使用Comsol有限元软件进行了电极/组织液液面流出电流密度仿真,仿真结果也表明,微电极的流出电流密度也随着微电极顶部开口直径的变化而变化,因此可以通过调整微电极顶部开口直径来调节电流密度,从而满足不同部位需要不同电流密度刺激的要求.