版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Swiss Fed Inst Technol Log Syst Lab CH-1015 Lausanne Switzerland Univ Lausanne Inst Comp Sci CH-1015 Lausanne Switzerland Univ Milan Dept Comp Sci I-26013 Crema CR Italy
出 版 物:《EVOLUTIONARY COMPUTATION》 (调优计算)
年 卷 期:1999年第7卷第3期
页 面:255-274页
核心收录:
学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Parallel evolutionary algorithms cellular automata cellular programming genetic algorithms statistical analysis
摘 要:Parallel evolutionary algorithms, over the past few years, have proven empirically worthwhile, but there seems to be a lack of understanding of their workings. In this paper we concentrate on cellular (fine-grained) models, our objectives being: (1) to introduce a suite of statistical measures, both at the genotypic and phenotypic levels, which are useful for analyzing the workings of cellular evolutionary algorithms;and (2) to demonstrate the application and utility of these measures on a specific example-the cellular programming evolutionary algorithm. The latter is used to evolve solutions to three distinct (hard) problems in the cellular-automata domain: density, synchronization, and random number generation. Applying our statistical measures, we are able to identify a number of trends common to all three problems (which may represent intrinsic properties of the algorithm itself), as well as a host of problem-specific features. We find that the evolutionary algorithm tends to undergo a number of phases which we are able to quantitatively delimit. The results obtained lead us to believe that the measures presented herein may prove useful in the general case of analyzing fine-grained evolutionary algorithms.