版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Inst Matemat Pura & Aplicada Rio De Janeiro Brazil
出 版 物:《JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS》 (优选法理论与应用杂志)
年 卷 期:1998年第96卷第2期
页 面:337-362页
核心收录:
学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (301280/86)
主 题:proximal point methods generalized distances variational inequalities interior point methods linear complementarity problems nonlinear complementarity problems
摘 要:We discuss here generalized proximal point methods applied to variational inequality problems. These methods differ from the classical point method in that a so-called Bregman distance substitutes for the Euclidean distance and forces the sequence generated by the algorithm to remain in the interior of the feasible region, assumed to be nonempty. We consider here the case in which this region is a polyhedron (which includes linear and nonlinear programming, monotone linear complementarity problems, and also certain nonlinear complementarity problems), and present two alternatives to deal with linear equality constraints. We prove that the sequences generated by any of these alternatives, which in general are different, converge to the same point, namely the solution of the problem which is closest, in the sense of the Bregman distance, to the initial iterate, for a certain class of operators. This class consists essentially of point-to-point and differentiable operators such that their Jacobian matrices are positive semidefinite (not necessarily symmetric) and their kernels are constant in the feasible region and invariant through symmetrization. For these operators, the solution set of the problem is also a polyhedron. Thus, we extend a previous similar result which covered only linear operators with symmetric and positive-semidefinite matrices.