版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Alicante Fac Sci Dept Stat & Operat Res E-03080 Alicante Spain Natl Univ San Luis Fac Phys Math & Nat Sci Dept Math San Luis Argentina Bulgarian Acad Sci Inst Math Plovdiv Bulgaria
出 版 物:《JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS》 (优选法理论与应用杂志)
年 卷 期:1999年第103卷第1期
页 面:95-119页
核心收录:
学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:DOES, (PB95-0687, PB96-0335, SAB95-0311) SCYT-UNSL of Argentina, (319502) Ministry of Education and Science, MES, (MM408/94)
主 题:linear inequality systems convex sets semi-infinite programming purification algorithms
摘 要:In many interesting semi-infinite programming problems, all the constraints are linear inequalities whose coefficients are analytical functions of a one-dimensional parameter. This paper shows that significant geometrical information on the feasible set of these problems can be obtained directly from the given coefficient functions. One of these geometrical properties gives rise to a general purification scheme for linear semi-infinite programs equipped with so-called analytical constraint systems. It is also shown that the solution sets of such kind of consistent systems form a transition class between polyhedral convex sets and closed convex sets in the Euclidean space of the unknowns.