版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Russian Acad Sci Cent Econ & Math Inst Moscow 117418 Russia
出 版 物:《SET-VALUED ANALYSIS》 (集值分析)
年 卷 期:1999年第7卷第1期
页 面:7-32页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:INTAS, (97-1050) Russian Foundation for Basic Research, RFBR, (99-01-00235)
主 题:L-cyclical monotonicity L-convex function L-subdifferential multifunction Q(0) general Monge-Kantorovich problem measure preserving map
摘 要:Abstract cyclical monotonicity is studied for a multivalued operator F : X -- L, where L subset of or equal to R-X. A criterion for F to be L-cyclically monotone is obtained and connections with the notions of L-convex function and of its L-subdifferentials are established. Applications are given to the general Monge-Kantorovich problem with fixed marginals. In particular, we show that in some cases the optimal measure is unique and generated by a unique (up to the a.e. equivalence) optimal solution (measure preserving map) for the corresponding Monge problem.