咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Abstract cyclical monotonicity... 收藏

Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem

为门奇将军鈥揔a ntorovich 问题提炼轮转的 Monotonicity 和 Monge 答案

作     者:Levin, V 

作者机构:Russian Acad Sci Cent Econ & Math Inst Moscow 117418 Russia 

出 版 物:《SET-VALUED ANALYSIS》 (集值分析)

年 卷 期:1999年第7卷第1期

页      面:7-32页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:INTAS, (97-1050) Russian Foundation for Basic Research, RFBR, (99-01-00235) 

主  题:L-cyclical monotonicity L-convex function L-subdifferential multifunction Q(0) general Monge-Kantorovich problem measure preserving map 

摘      要:Abstract cyclical monotonicity is studied for a multivalued operator F : X -- L, where L subset of or equal to R-X. A criterion for F to be L-cyclically monotone is obtained and connections with the notions of L-convex function and of its L-subdifferentials are established. Applications are given to the general Monge-Kantorovich problem with fixed marginals. In particular, we show that in some cases the optimal measure is unique and generated by a unique (up to the a.e. equivalence) optimal solution (measure preserving map) for the corresponding Monge problem.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分