版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Free Univ Brussels Lab Genet Procaryotes B-1050 Brussels Belgium Free Univ Brussels Ctr Nonlinear Phenomena & Complex Syst B-1050 Brussels Belgium
出 版 物:《INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS》 (Int. J. Bifurcation Chaos Appl. Sci. Eng.)
年 卷 期:1999年第9卷第10期
页 面:1889-1905页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
摘 要:This paper aims to show how complex nonlinear dynamic systems can be classified, analyzed and synthesized in terms of feedback circuits. The Rossler equations for deterministic chaos are revisited and generalized in this perspective. It is shown that once a proper set of feedback circuits is present in the Jacobian matrix of the system, the chaotic character of trajectories is remarkably robust versus changes in the nature of the nonlinearities. Labyrinth chaos, whereby simple differential systems generate large lattices of many unstable steady states embedded in a chaotic attractor, is constructed using this technique. In the limit case of a single three-element circuit without diagonal elements, one finds systems possessing an infinite lattice of unstable steady states between which trajectories percolate in a deterministic chaotic way.