版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Dortmund Inst Angew Math Lehrstuhl Approximat Theorie VIII D-44221 Dortmund Germany
出 版 物:《JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS》 (计算分析与应用杂志)
年 卷 期:2001年第3卷第3期
页 面:207-222页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:quasi-interpolants direct and inverse theorems left Gamma quasi-interpolant Gammaoperators in L-p spaces
摘 要:The optimal degree of approximation of the method of Gammaoperators G(n) in L-p spaces is O(n(-1)). In order to obtain much faster convergence, quasi-interpolants G(n)((k)) of G(n) in the sense of Sablonniere are considered. We show that for fixed k the operator-norms \\G(n)((k))\\(p) are uniformly bounded in n. In addition to this, for the first time in the theory of quasi-interpolants, all central problems for approximation methods (direct theorem, inverse theorem, equivalence theorem) could be solved completely for the L-P metric. Left Gamma quasi-interpolants turn out to be as powerful as linear combinations of Garrunaoperators [6].