咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Adaptive algorithm for trainin... 收藏

Adaptive algorithm for training pRAM neural networks on unbalanced data sets

为训练童车的适应算法失衡的数据集合上的神经网络

作     者:Ramanan, S Clarkson, TG Taylor, JG 

作者机构:Univ Essex Dept Elect Syst Engn Colchester CO4 3SQ Essex England Univ London Kings Coll Dept Elect & Elect Engn London WC2R 2LS England Univ London Kings Coll Dept Math London WC2R 2LS England 

出 版 物:《ELECTRONICS LETTERS》 (电子学快报)

年 卷 期:1998年第34卷第13期

页      面:1335-1336页

核心收录:

学科分类:0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

主  题:pyrimidal pRAM neural networks learning (artificial intelligence) Neural nets adaptive learning rate algorithm Adaptive system theory a priori class probability standard reinforcement learning algorithm unbalanced data sets feedforward neural nets 

摘      要:A novel algorithm for training pyramidal pRAM neural networks on an unbalanced training set is proposed. The behaviour of the standard reinforcement learning algorithm is analysed and an adaptive learning rate algorithm that modifies the reinforcement learning algorithm based on readily available a priori class probability is developed.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分