咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A fast parallel clustering alg... 收藏

A fast parallel clustering algorithm for large spatial databases

为大空间数据库的一个快平行聚类算法

作     者:Xu, XW Jäger, J Kriegel, HP 

作者机构:Siemens AG D-81730 Munich Germany Univ Munich Inst Comp Sci D-80538 Munich Germany 

出 版 物:《DATA MINING AND KNOWLEDGE DISCOVERY》 (数据开发与认知杂志)

年 卷 期:1999年第3卷第3期

页      面:263-290页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:clustering algorithms parallel algorithms distributed algorithms scalable data mining distributed index structures spatial databases 

摘      要:The clustering algorithm DBSCAN relies on a density-based notion of clusters and is designed to discover clusters of arbitrary shape as well as to distinguish noise. In this paper, we present PDBSCAN, a parallel version of this algorithm. We use the shared-nothing architecture with multiple computers interconnected through a network. A fundamental component of a shared-nothing system is its distributed data structure. We introduce the dR*-tree, a distributed spatial index structure in which the data is spread among multiple computers and the indexes of the data are replicated on every computer. We implemented our method using a number of workstations connected via Ethernet (10 Mbit). A performance evaluation shows that PDBSCAN offers nearly linear speedup and has excellent scaleup and sizeup behavior.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分