版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Mannheim D-68131 Mannheim Germany Acad Sci Czech Republic Inst Math CR-11567 Prague 1 Czech Republic
出 版 物:《COMPUTATIONAL COMPLEXITY》 (计算复杂性)
年 卷 期:1998年第7卷第4期
页 面:346-370页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:complexity of Boolean functions threshold circuits circuit lower bounds representations by multivariate polynomials
摘 要:We investigate the computational power of threshold-AND circuits versus threshold-XOR circuits. In contrast to the observation that, small weight threshold-AND circuits can be simulated by small weight threshold-XOR circuit, we present a function with small size unbounded weight threshold-AND circuits for which all threshold-XOR circuits have exponentially many nodes. This answers the basic question of separating subsets of the hypercube by hypersurfaces induced by sparse real polynomials. We prove our main result by a new lower bound argument for threshold circuits. Finally we show that unbounded weight threshold Rates cannot simulate alternation: There are AC(0,3)-functions which need exponential size threshold-AND circuits.