咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Computing Boolean functions by... 收藏

Computing Boolean functions by polynomials and threshold circuits

由多项式和阀值电路计算布尔功能

作     者:Krause, M Pudlák, P 

作者机构:Univ Mannheim D-68131 Mannheim Germany Acad Sci Czech Republic Inst Math CR-11567 Prague 1 Czech Republic 

出 版 物:《COMPUTATIONAL COMPLEXITY》 (计算复杂性)

年 卷 期:1998年第7卷第4期

页      面:346-370页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:complexity of Boolean functions threshold circuits circuit lower bounds representations by multivariate polynomials 

摘      要:We investigate the computational power of threshold-AND circuits versus threshold-XOR circuits. In contrast to the observation that, small weight threshold-AND circuits can be simulated by small weight threshold-XOR circuit, we present a function with small size unbounded weight threshold-AND circuits for which all threshold-XOR circuits have exponentially many nodes. This answers the basic question of separating subsets of the hypercube by hypersurfaces induced by sparse real polynomials. We prove our main result by a new lower bound argument for threshold circuits. Finally we show that unbounded weight threshold Rates cannot simulate alternation: There are AC(0,3)-functions which need exponential size threshold-AND circuits.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分