版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Hiroshima Univ Grad Sch Engn Higashihiroshima 7398527 Japan Hitachi Software Engn Co Yokohama Kanagawa Japan
出 版 物:《IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES》 (电子信息通信学会汇刊:电子学、通信及计算机科学基础)
年 卷 期:2002年第E85A卷第11期
页 面:2436-2446页
核心收录:
学科分类:0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Petri nets minimal siphon-traps Fourier-Motzkin method invariant computation polynomial-time algorithms
摘 要:A siphon-trap of a Petri net N is defined as a place set S with S-. = S-., where S-.={u\ N has an edge from u to a vertex of S} and S-. = {v\ N has an edge from a vertex of S to v}. A minimal siphon-trap is a siphon-trap such that any proper subset is not a siphon-trap. The following polynomial-time algorithms are proposed: 1. FDST for finding, if any, a minimal siphon-trap or even a maximal class of mutually disjoint minimal siphon-traps of a given Petri net;2. FDSTi that repeats FDST i times in order to extract more minimal siphon-traps than FDST. 3. STFM-T (STFM-T-i, respectively) which is a combination of the Fourier-Motzkin method and FDST (FDSTi) and which has high possibility of finding, if any, at least one minimal-support nonnegative integer invariant.