版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Hitotsubashi Univ Grad Sch Int Corp Strategy Chiyoda Ku Tokyo 1018439 Japan Tokyo Inst Technol Dept Math & Comp Sci Meguro Ku Tokyo 1528552 Japan
出 版 物:《SET-VALUED ANALYSIS》 (集值分析)
年 卷 期:2004年第12卷第4期
页 面:417-429页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:convex minimization problem maximal monotone operator proximal point algorithm resolvent uniformly convex Banach space
摘 要:In this paper, we introduce an iterative sequence for finding a solution of a maximal monotone operator in a uniformly convex Banach space. Then we first prove a strong convergence theorem, using the notion of generalized projection. Assuming that the duality mapping is weakly sequentially continuous, we next prove a weak convergence theorem, which extends the previous results of Rockafellar [SIAM J. Control Optim. 14 (1976), 877-898] and Kamimura and Takahashi [J. Approx. Theory 106 (2000), 226-2401. Finally, we apply our convergence theorem to the convex minimization problem and the variational inequality problem.