咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Weak and strong convergence th... 收藏

Weak and strong convergence theorems for maximal monotone operators in a Banach space

为在一个 Banach 空格的最大的单调操作符的弱、强壮的集中定理

作     者:Kamimura, S Kohsaka, F Takahashi, W 

作者机构:Hitotsubashi Univ Grad Sch Int Corp Strategy Chiyoda Ku Tokyo 1018439 Japan Tokyo Inst Technol Dept Math & Comp Sci Meguro Ku Tokyo 1528552 Japan 

出 版 物:《SET-VALUED ANALYSIS》 (集值分析)

年 卷 期:2004年第12卷第4期

页      面:417-429页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:convex minimization problem maximal monotone operator proximal point algorithm resolvent uniformly convex Banach space 

摘      要:In this paper, we introduce an iterative sequence for finding a solution of a maximal monotone operator in a uniformly convex Banach space. Then we first prove a strong convergence theorem, using the notion of generalized projection. Assuming that the duality mapping is weakly sequentially continuous, we next prove a weak convergence theorem, which extends the previous results of Rockafellar [SIAM J. Control Optim. 14 (1976), 877-898] and Kamimura and Takahashi [J. Approx. Theory 106 (2000), 226-2401. Finally, we apply our convergence theorem to the convex minimization problem and the variational inequality problem.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分