版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Alicante Fac Sci Dept Stat & Operat Res E-03080 Alicante Spain
出 版 物:《JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS》 (优选法理论与应用杂志)
年 卷 期:1999年第103卷第2期
页 面:313-335页
核心收录:
学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Direction General de Ensenanzas Superiores
主 题:convex semi-infinite programming constraint qualifications subdifferential mappings Valadier formula monotone operators locally Farkas-Minkowski systems
摘 要:A pair of constraint qualifications in convex semi-infinite programming, namely the locally Farkas-Minkowski constraint qualification and generalized Slater constraint qualification, are studied in the paper. We analyze the relationship between them, as well as the behavior of the so-called active and sup-active mappings, accounting for the tightness of the constraint system at each point of the variables space. The generalized Slater constraint qualification guarantees a regular behavior of the supremum function (defined as supremum of the infinitely many functions involved in the constraint system), giving rise to the well-known Valadier formula.