咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Locally Farkas-Minkowski syste... 收藏

Locally Farkas-Minkowski systems in convex semi-infinite programming

局部地在凸的半无限的编程的 Farkas-Minkowski 系统

作     者:Fajardo, MD López, MA 

作者机构:Univ Alicante Fac Sci Dept Stat & Operat Res E-03080 Alicante Spain 

出 版 物:《JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS》 (优选法理论与应用杂志)

年 卷 期:1999年第103卷第2期

页      面:313-335页

核心收录:

学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Direction General de Ensenanzas Superiores 

主  题:convex semi-infinite programming constraint qualifications subdifferential mappings Valadier formula monotone operators locally Farkas-Minkowski systems 

摘      要:A pair of constraint qualifications in convex semi-infinite programming, namely the locally Farkas-Minkowski constraint qualification and generalized Slater constraint qualification, are studied in the paper. We analyze the relationship between them, as well as the behavior of the so-called active and sup-active mappings, accounting for the tightness of the constraint system at each point of the variables space. The generalized Slater constraint qualification guarantees a regular behavior of the supremum function (defined as supremum of the infinitely many functions involved in the constraint system), giving rise to the well-known Valadier formula.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分