版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Zhejiang Univ Dept Math Hangzhou 310027 Zhejiang Peoples R China Univ Wisconsin Dept Math Sci Milwaukee WI 53201 USA
出 版 物:《ANNALS OF FUNCTIONAL ANALYSIS》 (Ann. Funct. Anal.)
年 卷 期:2019年第10卷第1期
页 面:29-45页
核心收录:
基 金:National Natural Science Foundation of China (NSFC) [11771388, 11371316] NSFC [11471288, 11601456]
主 题:Bochner-Riesz means Sobolev spaces almost-everywhere convergence saturation of approximation maximal functions Fourier series
摘 要:We investigate the convergence rate of the generalized Bochner-Riesz means S-R(delta,gamma) on L-P-Sobolev spaces in the sharp range of delta and p (p = 2). We give the relation between the smoothness imposed on functions and the rate of almost-everywhere convergence of S-R(delta,gamma). As an application, the corresponding results can be extended to the n-torus T-n by using some transference theorems. Also, we consider the following two generalized Bochner-Riesz multipliers, (1 - vertical bar xi vertical bar(gamma 1))(+)(delta) and (1 - vertical bar xi vertical bar(gamma 2))(-)(delta), where gamma(1), gamma(2), delta are positive real numbers. We prove that, as the maximal operators of the multiplier operators with respect to the two functions, their L-2(vertical bar x vertical bar(-beta))-boundedness is equivalent for any gamma(1), gamma(2) and fixed delta.