版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Eindhoven Univ Technol Dept Math & Comp Sci NL-5600 MB Eindhoven Netherlands Ctr Math & Comp Sci CWI Amsterdam Netherlands Univ Roma La Sapienza Dept Comp & Syst Sci Rome Italy
出 版 物:《THEORY OF COMPUTING SYSTEMS》 (计算系统理论)
年 卷 期:2009年第45卷第3期
页 面:470-485页
核心收录:
学科分类:07[理学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学]
基 金:European Commission, EC, (MRTN-CT-2003-504438) Ministerie van Onderwijs, Cultuur en Wetenschap, OCW
主 题:Online algorithms Competitive analysis Server routing Traveling salesman Traveling repairman
摘 要:In an online k-server routing problem, a crew of k servers has to visit points in a metric space as they arrive in real time. Possible objective functions include minimizing the makespan (k-Traveling Salesman Problem) and minimizing the sum of completion times (k-Traveling Repairman Problem). We give competitive algorithms, resource augmentation results and lower bounds for k-server routing problems in a wide class of metric spaces. In some cases the competitive ratio is dramatically better than that of the corresponding single server problem. Namely, we give a 1+O((log k)/k)-competitive algorithm for the k-Traveling Salesman Problem and the k-Traveling Repairman Problem when the underlying metric space is the real line. We also prove that a similar result cannot hold for the Euclidean plane.