版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Russian Acad Sci Inst Informat Transmiss Problems Moscow 127994 Russia
出 版 物:《THEORY OF COMPUTING SYSTEMS》 (计算系统理论)
年 卷 期:2012年第50卷第2期
页 面:296-312页
核心收录:
学科分类:07[理学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学]
基 金:Russian foundation for fundamental research [09-07-00180a 09-01-00709a]
主 题:Martin-Lof random sequences A priory semimeasure Probabilistic machines Bernoully sequences Parametric families of probability distributions Algorithmic information theory Turing degrees
摘 要:We study the a priori semimeasure of sets of P(theta)-random infinite sequences, where P(theta) is a family of probability distributions depending on a real parameter theta. In the case when for a computable probability distribution P(theta) an effectively strictly consistent estimator exists, we show that Levin s a priory semimeasure of the set of all P(theta)-random sequences is positive if and only if the parameter theta is a computable real number. We show that the a priory semimeasure of the set U(theta)I(theta), where I(theta) is the set of all P(theta)-random sequences and the union is taken over all algorithmically non-random theta, is positive.