咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >GENERALIZED TRAVELING SALESMAN... 收藏

GENERALIZED TRAVELING SALESMAN PROBLEM THROUGH N-SETS OF NODES - THE ASYMMETRICAL CASE

作     者:LAPORTE, G MERCURE, H NOBERT, Y 

作者机构:UNIV QUEBECDEPT SCI ADMMONTREAL H3C 3P8QUEBECCANADA 

出 版 物:《DISCRETE APPLIED MATHEMATICS》 (离散应用数学)

年 卷 期:1987年第18卷第2期

页      面:185-197页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta  (80EQ0428  A4747  A5486) 

主  题:MATHEMATICAL PROGRAMMING, LINEAR 

摘      要:This paper presents an exact algorithm for a generalized version of the Travelling Salesman Problem which consists of finding the shortest Hamiltonian circuit through n clusters of nodes, in the case where the distance matrix is asymmetrical. The problem is formulated as an integer linear program. The program is then relaxed and solved by a branch and bound algorithm. computational results are reported for problems involving up to 100 nodes and 8 clusters.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分