咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An inner-outer factorization i... 收藏

An inner-outer factorization in l<SUP>P</SUP> with applications to ARMA processes

在 <sup 的内部外部的因式分解 > 有到 ARMA 的应用的 p </sup> 处理

作     者:Cheng, Raymond Ross, William T. 

作者机构:Old Dominion Univ Dept Math & Stat Norfolk VA 23529 USA Univ Richmond Dept Math & Comp Sci Richmond VA 23173 USA 

出 版 物:《JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS》 (数学分析与应用杂志)

年 卷 期:2016年第437卷第1期

页      面:396-418页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Inner-outer factorization Hardy class Time series Autoregressive Moving average Stable process 

摘      要:The following inner-outer type factorization is obtained for the sequence space F: if the complex sequence F = (F-0,F-1, F-2,...) decays geometrically, then for any l(p) sufficiently close to 2 there exist J and G in l(p) such that F = J * G;J is orthogonal in the Birkhoff James sense to all of its forward shifts SJ,S(2)J,S(3)J,...;J and F generate the same S -invariant subspace of F;and G is a cyclic vector for S on l(p). These ideas are used to show that an ARMA equation with characteristic roots inside and outside of the unit circle has Symmetric -a -Stable solutions, in which the process and the given white noise are expressed as causal moving averages of a related i.i.d. SaS white noise. An autoregressive representation of the process is similarly obtained. (C) 2016 Elsevier Inc. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分