咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Prediction of plasma etching u... 收藏

Prediction of plasma etching using a randomized generalized regression neural network

用使随机化的概括回归蚀刻神经网络的血浆的预言

作     者:Kim, B Lee, DW Park, KY Choi, SR Choi, S 

作者机构:Korea Univ Dept Elect & Informat Engn Chochiwon 339700 Choongnam South Korea Sejong Univ Dept Elect Engn Bio Engn Res Ctr Seoul 143747 South Korea 

出 版 物:《VACUUM》 (真空)

年 卷 期:2004年第76卷第1期

页      面:37-43页

核心收录:

学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学] 

基  金:University IT Research Center 

主  题:plasma etching random generator generalized regression neural network statistical regression model 

摘      要:A new empirical technique to construct predictive models of plasma etch processes is presented. This was accomplished by combining a generalized regression neural network (GRNN) and a random generator (RG). The RG played a critical role to control neuron spreads in the pattern layer. The proposed R-GRNN was evaluated with experimental plasma etch data. The etching of silica thin films was characterized by a 2(3) full factorial experiment. The etch responses examined include aluminium etch rate, silica etch rate, profile angle, and DC bias. Additional test data were prepared to evaluate model appropriateness. Compared to conventional GRNN, the R-GRNN demonstrated much improved predictions of more than 40% for all etch responses. This was illustrated over statistical regression models. As a result, the proposed R-GRNN is an effective way to considerably improve the predictive ability of conventional GRNN. (C) 2004 Elsevier Ltd. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分