版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:UPMC CNRS UMR 7190 Inst DAlembert F-75252 Paris France CNRS UMR 8107 LML F-59655 Villeneuve Dascq France Univ Savoie POLYTECHAnnecy Chambery Lab LOCIE F-73376 Le Bourget Du Lac France
出 版 物:《MECHANICS RESEARCH COMMUNICATIONS》 (力学研究快报)
年 卷 期:2011年第38卷第5期
页 面:350-354页
核心收录:
学科分类:08[工学] 0801[工学-力学(可授工学、理学学位)]
基 金:ANR
主 题:Gurson-type models Spheroidal voids Micromechanics Limit analysis Upper and lower bounds Conic programming
摘 要:The paper is devoted to a numerical limit analysis of a hollow spheroidal model with a von Mises solid matrix. To this purpose, existing kinematic and static 3D-FEM codes for the case of spherical cavities have been modified and improved to account for the model of a spheroidal cavity confocal with the external spheroidal boundary. The optimized conic programming formulations and the resulting codes appear to be very efficient. This framework is then applied to the derivation of numerical upper and lower anisotropic bounds in the case of an oblate void. The numerical results obtained from a series of tests are presented and allow to assess the accuracy of closed-form expressions of the macroscopic criteria proposed by Gologanu et al. (1994, 1997) for porous media with oblate voids. (C) 2011 Elsevier Ltd. All rights reserved.