咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Intrusion detection using hier... 收藏

Intrusion detection using hierarchical neural networks

用层次神经网络的侵入检测

作     者:Zhang, CL Jiang, J Kamel, M 

作者机构:Univ Waterloo Dept Elect & Comp Engn Pattern Anal & Machine Intelligence Res Grp Waterloo ON N2L 3G1 Canada 

出 版 物:《PATTERN RECOGNITION LETTERS》 (模式识别快报)

年 卷 期:2005年第26卷第6期

页      面:779-791页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:intrusion detection neural networks back propagation algorithm radius basis functions hierarchical neural network neural network ensembles 

摘      要:Most intrusion detection system (IDS) with a single-level structure can only detect either misuse or anomaly attacks. Some IDSs with multi-level structure or multi-classifier are proposed to detect both attacks, but they are limited in adaptively learning. In this paper, two hierarchical IDS frameworks using Radial Basis Functions (RBF) are proposed. A serial hierarchical IDS (SHIDS) is proposed to identify misuse attack accurately and anomaly attacks adaptively. A parallel hierarchical IDS (PHIDS) is proposed to enhance the SHIDS s functionalities and performance. The experiments show that the two proposed IDSs can detect network intrusions in real-time, train new classifiers for novel intrusions automatically, and modify their structures adaptively after new classifiers are trained. (c) 2004 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分