版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:中国农业科学院农业资源与农业区划研究所/农业部农业信息技术重点实验室 华中师范大学城市和环境科学学院 黑龙江省农业科学院遥感技术中心
出 版 物:《中国农业科学》 (Scientia Agricultura Sinica)
年 卷 期:2015年第48卷第10期
页 面:1900-1914页
核心收录:
学科分类:082804[工学-农业电气化与自动化] 08[工学] 0828[工学-农业工程] 090101[农学-作物栽培学与耕作学] 09[农学] 0903[农学-农业资源与环境] 0901[农学-作物学]
基 金:国家自然科学基金(41271112,41171328) 中央级公益性科研院所专项资金(IARRP-2014-2)
摘 要:农作物种植结构信息对农业生产管理、农业可持续发展及国家粮食安全等具有重要意义。本文中概括了农作物种植结构遥感提取的理论基础,归类了近10年间不同农作物种植结构遥感提取技术方法,重点评述了不同技术方法的特点及应用情况,讨论和展望了未来农作物种植结构遥感提取研究的发展方向。当前,光谱特征、时相特征和空间特征是农作物种植结构遥感提取的三大理论基础。基于单一影像源的种植结构提取方法操作简单,但往往难以获取种植结构最佳识别期的遥感影像;基于多时序影像源的种植结构提取方法可以充分利用农作物季相节律特征,成为当前农作物种植结构遥感提取的主流方法。在基于多时序影像源的种植结构提取方法中,多特征参量法较单一特征参量法更适用于农作物种植结构复杂区域,基于多特征参量的统计模型法一定程度上解决了混合像元问题,但模型的鲁棒性有待提高。此外,遥感与统计数据融合的农作物种植结构提取法在国家及全球大尺度的农作物种植结构提取中具有优势,但较低的制图分辨率使得数据产品的区域适宜性较差。未来农作物种植结构遥感提取将以区域作物一张图为目标,充分发挥多源数据组合利用的优势,围绕多类型作物同步提取和大范围作物种植结构提取开展深入研究,重点加强遥感数据预处理、特征参量提取和分类器高效选择等关键技术研究,从而提升农作物种植结构遥感提取的时空尺度,满足多方位的农业应用需求。