版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Renmin Univ China Sch Informat Beijing Peoples R China
出 版 物:《APPLICABLE ANALYSIS》 (适用分析)
年 卷 期:2019年第98卷第4期
页 面:810-827页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:National Natural Science Foundation of China
主 题:Jump-diffusion model Tikhonov regularization Euler-Lagrange equation the finite difference method iterative algorithm
摘 要:This paper is devoted to calibrate smooth local volatility surface under jump-diffusion processes. This calibration problem is posed as an inverse problem: given a finite set of observed European option prices, find a local volatility function such that the theoretical option prices matches the observed ones optimally with respect to a prescribed performance criterion. Firstly, we obtain an Euler-Lagrange equation for the calibration problem using Tikhonov regularization method. Then we solve the Euler-Lagrange equation using an iterative algorithm and obtain the volatility. Finally, numerical experiments show the effectiveness of the proposed method.