咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >The calibration of volatility ... 收藏

The calibration of volatility for option pricing models with jump diffusion processes

为选择定价的轻快的刻度当模特儿与跳散开过程

作     者:Xu, Zuoliang Jia, Xiangyu 

作者机构:Renmin Univ China Sch Informat Beijing Peoples R China 

出 版 物:《APPLICABLE ANALYSIS》 (适用分析)

年 卷 期:2019年第98卷第4期

页      面:810-827页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:National Natural Science Foundation of China 

主  题:Jump-diffusion model Tikhonov regularization Euler-Lagrange equation the finite difference method iterative algorithm 

摘      要:This paper is devoted to calibrate smooth local volatility surface under jump-diffusion processes. This calibration problem is posed as an inverse problem: given a finite set of observed European option prices, find a local volatility function such that the theoretical option prices matches the observed ones optimally with respect to a prescribed performance criterion. Firstly, we obtain an Euler-Lagrange equation for the calibration problem using Tikhonov regularization method. Then we solve the Euler-Lagrange equation using an iterative algorithm and obtain the volatility. Finally, numerical experiments show the effectiveness of the proposed method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分