咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bayesian Gaussian process clas... 收藏

Bayesian Gaussian process classification with the EM-EP algorithm

高斯过程贝叶斯分类与电磁内啡肽算法

作     者:Kim, Hyun-Chul Ghahramani, Zoubin 

作者机构:Pohang Univ Sci & Technol Dept Ind & Management Engn Pohang 790784 South Korea Univ Cambridge Dept Engn Cambridge CB2 1PZ England 

出 版 物:《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 (IEEE Trans Pattern Anal Mach Intell)

年 卷 期:2006年第28卷第12期

页      面:1948-1959页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Gaussian process classification Bayesian methods kernel methods expectation propagation EM-EP algorithm 

摘      要:Gaussian process classifiers (GPCs) are Bayesian probabilistic kernel classifiers. In GPCs, the probability of belonging to a certain class at an input location is monotonically related to the value of some latent function at that location. Starting from a Gaussian process prior over this latent function, data are used to infer both the posterior over the latent function and the values of hyperparameters to determine various aspects of the function. Recently, the expectation propagation (EP) approach has been proposed to infer the posterior over the latent function. Based on this work, we present an approximate EM algorithm, the EM-EP algorithm, to learn both the latent function and the hyperparameters. This algorithm is found to converge in practice and provides an efficient Bayesian framework for learning hyperparameters of the kernel. A multiclass extension of the EM-EP algorithm for GPCs is also derived. In the experimental results, the EM-EP algorithms are as good or better than other methods for GPCs or Support Vector Machines (SVMs) with cross-validation.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分