版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Ljubljani Oddelek Matemat Inst Matemat Ljubljana 1111 Slovenia Univ Rennes 1 Math Lab F-35042 Rennes France
出 版 物:《JOURNAL OF STATISTICAL PHYSICS》 (统计物理学杂志)
年 卷 期:2008年第133卷第4期
页 面:739-760页
核心收录:
学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学]
基 金:Deutsche Forschungsgemeinschaft, DFG Universität Konstanz Javna Agencija za Raziskovalno Dejavnost RS, ARRS, (Z1-9570-0101-06)
主 题:Bessis-Moussa-Villani (BMV) conjecture Sum of hermitian squares Trace inequality Semidefinite programming
摘 要:We show that all the coefficients of the polynomial are nonnegative whenever = 13 is a nonnegative integer and A and B are positive semidefinite matrices of the same size. This has previously been known only for = 7. The validity of the statement for arbitrary m has recently been shown to be equivalent to the Bessis-Moussa-Villani conjecture from theoretical physics. In our proof, we establish a connection to sums of hermitian squares of polynomials in noncommuting variables and to semidefinite programming. As a by-product we obtain an example of a real polynomial in two noncommuting variables having nonnegative trace on all symmetric matrices of the same size, yet not being a sum of hermitian squares and commutators.