咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Multi-GPU-based Swendsen-Wang ... 收藏

Multi-GPU-based Swendsen-Wang multi-cluster algorithm for the simulation of two-dimensional <i>q</i>-state Potts model

为二维的 q 状态 Potts 模型的模拟的 Multi-GPU-based SwendsenWang 多簇算法

作     者:Komura, Yukihiro Okabe, Yutaka 

作者机构:Tokyo Metropolitan Univ Dept Phys Tokyo 1920397 Japan 

出 版 物:《COMPUTER PHYSICS COMMUNICATIONS》 (计算机物理学通讯)

年 卷 期:2013年第184卷第1期

页      面:40-44页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0702[理学-物理学] 

基  金:Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Funding Source: KAKEN 

主  题:Monte Carlo simulation Cluster algorithm Ising model Parallel computing Multi-CPU 

摘      要:We present multiple GPU computing with the common unified device architecture (CUDA) for the Swendsen-Wang multi-cluster algorithm of two-dimensional (2D) q-state Potts model. Extending our algorithm for single GPU computing [Y. Komura, Y. Okabe, CPU-based Swendsen-Wang multi-cluster algorithm for the simulation of two-dimensional classical spin systems, Comput. Phys. Comm. 183 (2012) 1155-1161], we realize the CPU computation of the Swendsen-Wang multi-cluster algorithm for multiple GPUs. We implement our code on the large-scale open science supercomputer TSUBAME 2.0, and test the performance and the scalability of the simulation of the 2D Potts model. The performance on Tesla M2050 using 256 GPUs is obtained as 37.3 spin flips per a nano second for the q = 2 Potts model (Ising model) at the critical temperature with the linear system size L = 65536. (C) 2012 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分