咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >First-order methods for sparse... 收藏

First-order methods for sparse covariance selection

为稀少的协变性选择的一阶的方法

作     者:D'Aspremont, Alexandre Banerjee, Onureena El Ghaoui, Laurent 

作者机构:Princeton Univ ORFE Dept Princeton NJ 08544 USA Univ Calif Berkeley Dept EECS Berkeley CA 94720 USA 

出 版 物:《SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS》 (工业与应用数学会矩阵分析和应用杂志)

年 卷 期:2008年第30卷第1期

页      面:56-66页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:National Science Foundation  NSF  (0625352) 

主  题:covariance selection semidefinite programming coordinate descent 

摘      要:Given a sample covariance matrix, we solve a maximum likelihood problem penalized by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a sparse representation of the sample data and to highlight conditional independence relationships between the sample variables. We first formulate a convex relaxation of this combinatorial problem, we then detail two efficient first-order algorithms with low memory requirements to solve large-scale, dense problem instances.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分