版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Princeton Univ ORFE Dept Princeton NJ 08544 USA Univ Calif Berkeley Dept EECS Berkeley CA 94720 USA
出 版 物:《SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS》 (工业与应用数学会矩阵分析和应用杂志)
年 卷 期:2008年第30卷第1期
页 面:56-66页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:National Science Foundation NSF (0625352)
主 题:covariance selection semidefinite programming coordinate descent
摘 要:Given a sample covariance matrix, we solve a maximum likelihood problem penalized by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a sparse representation of the sample data and to highlight conditional independence relationships between the sample variables. We first formulate a convex relaxation of this combinatorial problem, we then detail two efficient first-order algorithms with low memory requirements to solve large-scale, dense problem instances.