咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A Real-Time Deformable Detecto... 收藏

A Real-Time Deformable Detector

实时变形检测仪

作     者:Ali, Karim Fleuret, Francois Hasler, David Fua, Pascal 

作者机构:EPFL IC CVLAB Stn 14 CH-1015 Lausanne Switzerland Idiap Res Inst Ctr Parc CH-1920 Martigny Switzerland CSEM SA CH-2002 Neuchatel Switzerland 

出 版 物:《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 (IEEE Trans Pattern Anal Mach Intell)

年 卷 期:2012年第34卷第2期

页      面:225-239页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Image processing and computer vision machine learning object detection 

摘      要:We propose a new learning strategy for object detection. The proposed scheme forgoes the need to train a collection of detectors dedicated to homogeneous families of poses, and instead learns a single classifier that has the inherent ability to deform based on the signal of interest. We train a detector with a standard AdaBoost procedure by using combinations of pose-indexed features and pose estimators. This allows the learning process to select and combine various estimates of the pose with features able to compensate for variations in pose without the need to label data for training or explore the pose space in testing. We validate our framework on three types of data: hand video sequences, aerial images of cars, and face images. We compare our method to a standard boosting framework, with access to the same ground truth, and show a reduction in the false alarm rate of up to an order of magnitude. Where possible, we compare our method to the state of the art, which requires pose annotations of the training data, and demonstrate comparable performance.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分