版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Chinese Acad Sci AMSS Key Lab Math Mechanizat Inst Syst Sci Beijing 100864 Peoples R China
出 版 物:《THEORETICAL COMPUTER SCIENCE》 (理论计算机科学)
年 卷 期:2009年第410卷第21-23期
页 面:2285-2290页
核心收录:
学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Key Basic Research Project of China National Natural Science Foundation of China, NSFC
主 题:Multivariate quadratic polynomial equations MAX-MQ Approximation algorithm Approximation ratio
摘 要:Given a multivariate quadratic polynomial system in a finite field F,, the problem MAX-MQ is to find a solution satisfying the maximal number of equations. We prove that the probability of a random assignment satisfying a non-degenerate quadratic equation is at least 1/q - O(q(-n/2)), where n is the number of the variables in the equation. Consequently, the random assignment provides a polynomial-time approximation algorithm with approximation ratio q + O(q(-n/2)) for non-degenerate MAX-MQ. For large n, the ratio is close to q. According to a result by Hastad, it is NP-hard to approximate MAX-MQ with an approximation ratio of q - is an element of for a small positive number is an element of. Therefore, the minimal approximation ratio that can be achieved in polynomial time for MAX-MQ is q. (C) 2009 Elsevier B.V. All rights reserved.