版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Seoul Natl Univ Dept Stat 1 Gwanak Ro Seoul 08826 South Korea
出 版 物:《ANNALS OF STATISTICS》 (Ann. Stat.)
年 卷 期:2018年第46卷第5期
页 面:2216-2250页
核心收录:
学科分类:07[理学] 0714[理学-统计学(可授理学、经济学学位)] 0701[理学-数学] 070101[理学-基础数学]
基 金:National Research Foundation of Korea (NRF) - Korea government (MSIP) [NRF-2014R1A4A1007895 NRF-2015R1A2A1A05001753]
主 题:Nonparametric additive regression smooth backfitting errors-in-variables models deconvolution kernel smoothing
摘 要:In this work, we develop a new smooth backfitting method and theory for estimating additive nonparametric regression models when the covariates are contaminated by measurement errors. For this, we devise a new kernel function that suitably deconvolutes the bias due to measurement errors as well as renders a projection interpretation to the resulting estimator in the space of additive functions. The deconvolution property and the projection interpretation are essential for a successful solution of the problem. We prove that the method based on the new kernel weighting scheme achieves the optimal rate of convergence in one-dimensional deconvolution problems when the smoothness of measurement error distribution is less than a threshold value. We find that the speed of convergence is slower than the univariate rate when the smoothness of measurement error distribution is above the threshold, but it is still much faster than the optimal rate in multivariate deconvolution problems. The theory requires a deliberate analysis of the nonnegligible effects of measurement errors being propagated to other additive components through backfitting operation. We present the finite sample performance of the deconvolution smooth backfitting estimators that confirms our theoretical findings.