咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A linearization procedure and ... 收藏

A linearization procedure and a VDM/ECM algorithm for penalized and constrained nonparametric maximum likelihood estimation for mixture models

一个 linearization 过程和一个 VDM/ECM 算法为为混合模型惩罚了并且抑制非参量的最大似然率估计

作     者:Wang, Ji-Ping 

作者机构:Northwestern Univ Dept Stat Evanston IL 60208 USA 

出 版 物:《COMPUTATIONAL STATISTICS & DATA ANALYSIS》 (计算统计学与数据分析)

年 卷 期:2007年第51卷第6期

页      面:2946-2957页

核心收录:

学科分类:08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:mixture models nonparametric maximum likelihood computing algorithm penalized NPMLE constrained NPMLE VDM/ECM 

摘      要:Suppose independent observations X-i, i = 1,..., n are observed from a mixture model f(x;Q) equivalent to integral f (x;lambda) d Q (lambda), where lambda is a scalar and Q(lambda) is a nondegenerate distribution with an unspecified form. We consider to estimate Q(lambda) by nonparametric maximum likelihood (NPML) method under two scenarios: (1) the likelihood is penalized by a functional g(Q);and (2)Q is under a constraint g(Q) = g(0). We propose a simple and reliable algorithm termed VDM/ECM for Q-estimation when the likelihood is penalized by a linear functional. We show this algorithm can be applied to a more general situation where the penalty is not linear, but a function of linear functionals by a linearization procedure. The constrained NPMLE can be found by penalizing the quadratic distance vertical bar g(Q) - g(0)vertical bar(2) under a large penalty factor gamma 0 using this algorithm. The algorithm is illustrated with two real data sets. (c) 2006 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分