版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Northwestern Univ Dept Stat Evanston IL 60208 USA
出 版 物:《COMPUTATIONAL STATISTICS & DATA ANALYSIS》 (计算统计学与数据分析)
年 卷 期:2007年第51卷第6期
页 面:2946-2957页
核心收录:
学科分类:08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:mixture models nonparametric maximum likelihood computing algorithm penalized NPMLE constrained NPMLE VDM/ECM
摘 要:Suppose independent observations X-i, i = 1,..., n are observed from a mixture model f(x;Q) equivalent to integral f (x;lambda) d Q (lambda), where lambda is a scalar and Q(lambda) is a nondegenerate distribution with an unspecified form. We consider to estimate Q(lambda) by nonparametric maximum likelihood (NPML) method under two scenarios: (1) the likelihood is penalized by a functional g(Q);and (2)Q is under a constraint g(Q) = g(0). We propose a simple and reliable algorithm termed VDM/ECM for Q-estimation when the likelihood is penalized by a linear functional. We show this algorithm can be applied to a more general situation where the penalty is not linear, but a function of linear functionals by a linearization procedure. The constrained NPMLE can be found by penalizing the quadratic distance vertical bar g(Q) - g(0)vertical bar(2) under a large penalty factor gamma 0 using this algorithm. The algorithm is illustrated with two real data sets. (c) 2006 Elsevier B.V. All rights reserved.