版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Dongbei Univ Finance & Econ Sch Stat Dalian 116025 Peoples R China
出 版 物:《APPLIED SOFT COMPUTING》 (应用软计算)
年 卷 期:2019年第80卷
页 面:93-106页
核心收录:
学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China
主 题:Hybrid forecasting model Wavelet neural network Multi-objective Optimization Algorithm Wind power forecasting
摘 要:Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance prediction accuracy, this study developed a hybrid model that incorporates the following stages. First, an improved complete ensemble empirical mode decomposition with adaptive noise technology was applied to decompose the wind energy series for eliminating noise and extracting the main features of original data. Next, to achieve high accurate and stable forecasts, an improved wavelet neural network optimized by optimization methods was built and used to implement wind energy prediction. Finally, hypothesis testing, stability test and four case studies including eighteen comparison models were utilized to test the abilities of prediction models. The experimental results show that the average values of the mean absolute percent errors of the proposed hybrid model are 5.0116% (one-step ahead), 7.7877% (two-step ahead) and 10.6968% (three-step ahead), which are much lower than comparison models. (C) 2019 Elsevier B.V. All rights reserved.