版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Technol Compiegne LMAC Compiegne France Univ Poitiers Lab Math & Appl Futuroscope Chasseneuil Poitiers France
出 版 物:《STATISTICS & PROBABILITY LETTERS》 (统计学与概率论通讯)
年 卷 期:2019年第151卷
页 面:17-28页
核心收录:
学科分类:07[理学] 0714[理学-统计学(可授理学、经济学学位)] 0701[理学-数学] 070101[理学-基础数学]
基 金:GDR 3477 GeoSto
主 题:Nonparametric regression Stochastic approximation algorithm Large and moderate deviation principles
摘 要:In the present paper, we are mainly concerned with a family of kernel type estimators based upon spatial data. More precisely, we establish large and moderate deviations principles for the recursive kernel estimators of a regression function for spatial data defined by the stochastic approximation algorithm. (C) 2019 Elsevier B.V. All rights reserved.