版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:KITT Deemed Be Univ Dept Elect Engn Bhubaneswar 751024 Odisha India Indian Inst Technol Guwahati Dept Elect & Elect Engn Gauhati 781039 India Natl Inst Technol Dept Elect Engn Rourkela 769008 India
出 版 物:《SOFT COMPUTING》 (Soft Comput.)
年 卷 期:2019年第23卷第23期
页 面:12317-12330页
核心收录:
学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Unbalanced radial distribution system planning Fuzzy set Distributed generation Differential evolution algorithm Cuckoo search algorithm
摘 要:This paper presents a multi-objective planning approach for the optimal placement of distributed generation (DG) units in unbalanced radial distribution systems using a hybrid differential evolution (DE) and cuckoo search algorithm (CSA). In this planning optimization, the objective functions formulated are the minimization of: (i) total real power loss, (ii) maximum average voltage deviation index, (iii) total neutral current, and (iv) total cost. The total cost includes the cost of energy purchased from the grid and the capital investment and operational cost of DG units. These objective functions are aggregated using max-max and max-min analogies. Fuzzy set theory is used to model the uncertainties in load and generation of renewable DG units. Hence, these objective functions are found to be fuzzy sets. An appropriate defuzzification approach is used so as to compare and rank different solutions. A modified three-phase forward-backward sweep-based load flow algorithm including the DG model is used as the support subroutine of the proposed solution algorithm using the hybrid DE-CSA. The simulation results show that significant improvements in power loss, maximum average voltage deviation, system unbalance, and total annual energy cost are obtained due to the DG integration in unbalanced distribution networks. The results obtained with fuzzy-based modeling of load and generation are found to be superior as compared to the deterministic load and generation.