版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Electrical Engineering and Computer Science Control/Robotics Research Laboratory (CRRL) Polytechnic University Brooklyn NY 11201 United States Department of Mechanical Engineering Control/Robotics Research Laboratory (CRRL) Polytechnic University Brooklyn NY 11201 United States
出 版 物:《AUTOMATICA》 (Automatica)
年 卷 期:1995年第31卷第1期
页 面:83-97页
核心收录:
学科分类:0711[理学-系统科学] 0808[工学-电气工程] 07[理学] 08[工学] 070105[理学-运筹学与控制论] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0701[理学-数学] 071101[理学-系统理论]
基 金:U.S. Army Research Office (DAAHO4-93-2-0009a DAAHO4-93-G-0209 NSF91-12362)
主 题:FLEXIBLE MANIPULATORS VIBRATION DAMPING NONLINEAR CONTROL INPUT PRESHAPING IDENTIFICATION ADAPTIVE CONTROL
摘 要:Adaptive input precompensators in conjunction with nonlinear controllers for multi-link flexible manipulators are considered in this paper. In an earlier paper, we had shown that application of a nonlinear inner-loop control reduces the variations in frequencies due to the geometrical configuration for multi-link flexible manipulators. This results in a better performance when input preshaping or any other controller based on a linear model is designed. To improve the performance of the system to parameter variations (e.g. changes in payload), an adaptive version of the advocated controller is utilized. This is achieved by estimating the time of application of the impulses for on-line preshaping and in the case of payload uncertainty, estimation of the payload and real-time adjustment of the nonlinear inner-loop based controller. Frequency domain Time-Varying Transfer Function Estimate (TTFE) and Empirical Transfer Function Estimate (ETFE) system identification algorithms are proposed for estimation of vibrational modes and unknown payload. Experimental results on a two-link flexible manipulator with adaptive nonlinear control and preshaping are provided to show the effectiveness of the advocated controllers. Overall, the present paper completely generalizes the adaptive input preshaping technique for multi-link flexible manipulators.