咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Data Mining: How Research Meet... 收藏

Data Mining: How Research Meets Practical Development?

数据采矿:研究怎么遇见实际开发

作     者:Wu, Xindong Yu, Philip S. Piatetsky-Shapiro, Gregory Cercone, Nick Lin, T.Y. Kotagiri, Ramamohanarao Wah, Benjamin W. 

作者机构:Department of Computer Science University of Vermont BurlingtonVT United States IBM T. J. Watson Research Center HawthorneNY United States KDnuggets BrooklineMA United States School of Computer Science University of Waterloo WaterlooON Canada Department of Mathematics and Computer Science San Jose State University San JoseCA United States Department of Computer Science and Software Engineering University of Melbourne ParkvilleVIC Australia Computer Systems Research Laboratory University of Illinois Urbana-Champaign UrbanaIL United States Department of Computer Science Universityof Vermont BurlingtonVT05405 United States 

出 版 物:《Knowledge and Information Systems》 (Knowl. Inf. Systems. Syst.)

年 卷 期:2003年第5卷第2期

页      面:248-261页

核心收录:

学科分类:0711[理学-系统科学] 07[理学] 08[工学] 070105[理学-运筹学与控制论] 0835[工学-软件工程] 081101[工学-控制理论与控制工程] 0701[理学-数学] 071101[理学-系统理论] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Data mining 

摘      要:At the 2001 IEEE International Conference on Data Mining in San Jose, California,on November 29 to December 2, 2001, there was a panel discussion on how datamining research meets practical development. One of the motivations for organizing thepanel discussion was to provide useful advice for industrial people to explore their directionsin data mining development. Based on the panel discussion, this paper presentsthe views and arguments from the panel members, the Conference Chair and the ProgramCommittee Co-Chairs. These people as a group have both academic and industrialexperiences in different data mining related areas such as databases, machine learning,and neural networks. We will answer questions such as (1) how far data mining is frompractical development, (2) how data mining research differs from practical development,and (3) what are the most promising areas in data mining for practical development. © 2003, Springer-Verlag London Limited.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分