咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >MAXIMUM A POSTERIORI DECISION ... 收藏

MAXIMUM A POSTERIORI DECISION AND EVALUATION OF CLASS PROBABILITIES BY BOLTZMANN PERCEPTRON CLASSIFIERS

最大一个 posteriori 决定和由 Boltzmann 视感控器分类器的班可能性的评估

作     者:YAIR, E GERSHO, A 

作者机构:UNIV CALIF SANTA BARBARACTR INFORMAT PROC RESDEPT ELECT & COMP ENGNSANTA BARBARACA 93106 

出 版 物:《PROCEEDINGS OF THE IEEE》 (电气与电子工程师学会会报)

年 卷 期:1990年第78卷第10期

页      面:1620-1628页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 

基  金:Rockwell International Corporation Weizmann Foundation for scientific research University of California, UC 

主  题:Boltzmann perceptron classifiers decision theory input-output mapping neural classifier neural nets neural network pattern recognition probability probability distribution functions 

摘      要:It is shown that neural network architectures may offer a valuable alternative to the Bayesian classifier. With neural networks, the a posteriori probabilities are computed with no a priori assumptions about the probability distribution functions (PDFs) that generate the data. Rather than assuming certain types of PDFs for the input data, the neural classifier uses a general type of input-output mapping which is then designed to optimally comply with a given set of examples called the training set. It is demonstrated that the a posteriori class probabilities can be efficiently computed by a deterministic feedforward network which is called the Boltzmann perceptron classifier (BPC). Maximum a posteriori (MAP) classifiers are also constructed as a special case of the BPC. Structural relationships between the BPC and a conventional multilayer perceptron (MLP) are given, and it is demonstrated that rather intricate boundaries between classes can be formed even with a relatively modest number of network units. Simulation results show that the BPC is comparable in performance to a Bayesian classifier

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分