咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Programmable canonical correla... 收藏

Programmable canonical correlation analysis: A flexible framework for blind adaptive spatial filtering

作     者:Schell, SV Gardner, WA 

作者机构:UNIV CALIF DAVIS DEPT ELECT & COMP ENGN DAVIS CA 95616 USA 

出 版 物:《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 (IEEE Trans Signal Process)

年 卷 期:1995年第43卷第12期

页      面:2898-2908页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 

基  金:Office of Naval Research  ONR  (N00014-92-5-1218) 

主  题:Adaptive filters Algorithm design and analysis Sensor arrays Signal analysis Signal design Filtering algorithms Calibration Adaptive arrays Sensor systems and applications Intelligent sensors 

摘      要:We present a new framework known as the programmable canonical correlation analysis (PCCA) for the design of blind adaptive spatial filtering algorithms that attempt to separate one or more signals of interest from unknown cochannel interference and noise. Unlike many alternatives, PCCA does not require knowledge of the calibration data for the array, directions of arrival, training signals, or spatial autocorrelation matrices of the the noise or interferers. A novel aspect of PCCA is the ease with which new algorithms, targeted at capturing all signals from particular classes of interest, can be developed within this framework. In this paper, several existing algorithms are unified within the PCCA framework, and new algorithms are derived as examples. Analysis for the infinite-collect case and simulation for the finite-collect case illustrate the operation of specific algorithms within the PCCA framework.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分