版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:北京信息科技大学现代测控技术教育部重点实验室北京100192
出 版 物:《组合机床与自动化加工技术》 (Modular Machine Tool & Automatic Manufacturing Technique)
年 卷 期:2019年第4期
页 面:74-77页
学科分类:080202[工学-机械电子工程] 08[工学] 0802[工学-机械工程] 080201[工学-机械制造及其自动化]
基 金:国家高技术发展研究计划(2015AA043702) 北京市教育委员会科技计划一般项目(KM201811232023)
摘 要:为了实现齿轮运行过程中的磨损程度准确识别,提出了基于改进小波阈值样本熵(IWT_SE)与遗传算法优化支持向量机(GA_SVM)的齿轮磨损程度检测方法。首先,对齿轮振动信号进行改进小波阈值降噪;其次,计算降噪后信号的样本熵,组成特征向量;最后,将特征向量输入基于GA_SVM建立的分类器进行故障识别分类。通过齿轮实验数据分析了算法中的参数选取问题;将该方法用于齿轮实验数据,并与传统小波阈值函数样本熵分别与BPNN,PNN,SVM,PSO_SVM相结合的方法进行对比分析,结果表明,IWT_SE与GA-SVM相结合时识别准确率最高,达95%,证明文中所提方法对齿轮磨损程度识别具有一定实际应用价值。