版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:福建农林大学计算机与信息学院福建福州350002 生态与资源统计福建省高校重点实验室福建福州350002 厦门大学管理学院数据挖掘研究中心福建厦门361005
出 版 物:《数学的实践与认识》 (Mathematics in Practice and Theory)
年 卷 期:2019年第49卷第9期
页 面:204-210页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)]
摘 要:数据不平衡性是目前数据挖掘面临的主要问题之一.在客户流失预测研究中,数据不平衡的问题影响预测精度,导致准确率低,AUC值变小.传统重采样方法虽然能够解决数据不平衡问题,但会导致有效信息缺失、数据过度拟合等问题,为避免问题发生文中采用SMOTERF法,针对客户流失数据进行平衡后再用分类预测能较大地解决数据不平衡问题,且准确率高,AUC值大,效果较好.近年来服务业对客户流失的关切度越来越高,研究如何在原有的客户信息上去预测未来客户流失状况作出及时的应对措施,减少企业损失有重要意义.在客户流失预测中,对于解决数据的不平衡表现尤为重要.