咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >On the expected diameter, widt... 收藏

On the expected diameter, width, and complexity of a stochastic convex hull

在随机的凸的壳的期望的直径,宽度,和复杂性上

作     者:Xue, Jie Li, Yuan Janardan, Ravi 

作者机构:Univ Minnesota Twin Cities Dept Comp Sci & Engn Minneapolis MN 55455 USA 

出 版 物:《COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS》 (计算几何学)

年 卷 期:2019年第82卷

页      面:16-31页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota 

主  题:Convex hull Uncertain data Expectation Approximation algorithm 

摘      要:We investigate several computational problems related to the stochastic convex hull (SCH). Given a stochastic dataset consisting of n points in R-d each of which has an existence probability, a SCH refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with its existence probability. We are interested in computing certain expected statistics of a SCH, including diameter, width, and combinatorial complexity. For diameter, we establish a deterministic 1.633-approximation algorithm with a time complexity polynomial in both n and d. For width, two approximation algorithms are provided: a deterministic O(1)-approximation running in O(n(d+1) log n) time, and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity, we propose an exact O(n(d))-time algorithm. Our solutions exploit many geometric insights in Euclidean space, some of which might be of independent interest. (C) 2019 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分