咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A NEW APPROACH TO SELECT THE B... 收藏

A NEW APPROACH TO SELECT THE BEST SUBSET OF PREDICTORS IN LINEAR REGRESSION MODELLING: BI-OBJECTIVE MIXED INTEGER LINEAR PROGRAMMING

在线性回归建模选择预言者的最好的子集的一条新途径: 双性人目的混合整数线性编程

作     者:Charkhgard, Hadi Eshragh, Ali 

作者机构:Univ S Florida Dept Ind & Management Syst Engn Tampa FL 33620 USA Univ Newcastle Sch Math & Phys Sci Callaghan NSW 2308 Australia 

出 版 物:《ANZIAM JOURNAL》 (澳大利亚和新西兰工业与应用数学杂志)

年 卷 期:2019年第61卷第1期

页      面:64-75页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:linear regression best subset selection bi-objective mixed integer linear programming 

摘      要:We study the problem of choosing the best subset of p features in linear regression, given n observations. This problem naturally contains two objective functions including minimizing the amount of bias and minimizing the number of predictors. The existing approaches transform the problem into a single-objective optimization problem. We explain the main weaknesses of existing approaches and, to overcome their drawbacks, we propose a bi-objective mixed integer linear programming approach. A computational study shows the efficacy of the proposed approach.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分