咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >2D Compass Codes 收藏

2D Compass Codes

作     者:Muyuan Li Daniel Miller Michael Newman Yukai Wu Kenneth R. Brown 

作者机构:School of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA Institut für Theoretische Physik III Heinrich-Heine-Universität Düsseldorf D-40225 Düsseldorf Germany Departments of Electrical and Computer Engineering Chemistry and Physics Duke University Durham North Carolina 27708 USA Department of Physics University of Michigan Ann Arbor Michigan 48109 USA 

出 版 物:《Physical Review X》 (Phys. Rev. X)

年 卷 期:2019年第9卷第2期

页      面:021041-021041页

核心收录:

学科分类:07[理学] 0702[理学-物理学] 

基  金:Office of the Director of National Intelligence, ODNI Alexander von Humboldt-Stiftung National Science Foundation, NSF, (1730449, 1717523, 1832377, 1730104) Intelligence Advanced Research Projects Activity, IARPA, (W911NF-10-1-0231) ARO MURI, (W911NF-16-1-0349) 

主  题:Quantum error correction Quantum memories Surface code quantum computing 

摘      要:The compass model on a square lattice provides a natural template for building subsystem stabilizer codes. The surface code and the Bacon-Shor code represent two extremes of possible codes depending on how many gauge qubits are fixed. We explore threshold behavior in this broad class of local codes by trading locality for asymmetry and gauge degrees of freedom for stabilizer syndrome information. We analyze these codes with asymmetric and spatially inhomogeneous Pauli noise in the code capacity and phenomenological models. In these idealized settings, we observe considerably higher thresholds against asymmetric noise. At the circuit level, these codes inherit the bare-ancilla fault tolerance of the Bacon-Shor code.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分