版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Politecn Valencia Dept Sistemes Informat & Computacio Valencia 46022 Spain
出 版 物:《PATTERN RECOGNITION》 (图形识别)
年 卷 期:2012年第45卷第9期
页 面:3183-3192页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:EC (FEDER/FSE) under the transLectures project [FP7-ICT-2011-7-287755] Spanish MEC/MICINN [CSD2007-00018, TIN2009-14511] FPU [AP2010-4349] Spanish MITyC [TSI-020110-2009-439] Generalitat Valenciana [Prometeo/2009/014, GV/2010/067] UPV
主 题:Length modelling Log-linear models Phrase-based models Statistical machine translation
摘 要:Explicit length modelling has been previously explored in statistical pattern recognition with successful results. In this paper, two length models along with two parameter estimation methods and two alternative parametrisations for statistical machine translation (SMT) are presented. More precisely, we incorporate explicit bilingual length modelling in a state-of-the-art log-linear SMT system as an additional feature function in order to prove the contribution of length information. Finally, a systematic evaluation on reference SMT tasks considering different language pairs proves the benefits of explicit length modelling. (C) 2012 Elsevier Ltd. All rights reserved.