咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Fast cross-validation of high-... 收藏

Fast cross-validation of high-breakdown resampling methods for PCA

为 PCA 的高故障的物件 ampling 方法的快交叉验证

作     者:Hubert, Mia Engelen, Sanne 

作者机构:Katholieke Univ Leuven Dept Math B-3001 Louvain Belgium 

出 版 物:《COMPUTATIONAL STATISTICS & DATA ANALYSIS》 (计算统计学与数据分析)

年 卷 期:2007年第51卷第10期

页      面:5013-5024页

核心收录:

学科分类:08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:cross-validation robustness MCD ROBPCA PRESS fast algorithms 

摘      要:Cross-validation (CV) is a very popular technique for model selection and model validation. The general procedure of leaveone-out CV (LOO-CV) is to exclude one observation from the data set, to construct the fit of the remaining observations and to evaluate that fit on the item that was left out. In classical procedures such as least-squares regression or kernel density estimation, easy formulas can be derived to compute this CV fit or the residuals of the removed observations. However, when high-breakdown resampling algorithms are used, it is no longer possible to derive such closed-form expressions. High-breakdown methods are developed to obtain estimates that can withstand the effects of outlying observations. Fast algorithms are presented for LOO-CV when using a high-breakdown method based on resampling, in the context of robust covariance estimation by means of the MCD estimator and robust principal component analysis. A robust PRESS curve is introduced as an exploratory tool to select the number of principal components. Simulation results and applications on real data show the accuracy and the gain in computation time of these fast CV algorithms. (c) 2006 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分