版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:LSECInstitute of Computational Mathematics and Scientific/Engineering ComputingNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China School of Mathematical SciencesCapital Normal UniversityBeijing 100048China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2019年第62卷第12期
页 面:2591-2616页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by National Natural Science Foundation of China(Grant No.11671390) supported by National Natural Science Foundation of China(Grant No.11371359)
主 题:adaptive finite element a posteriori error estimate hexahedral nonconforming element hangingnode
摘 要:Nonconforming grids with hanging nodes are frequently used in adaptive finite element comput at *** all earlier works on such methods,proper cons train ts should be enforced on degrees of freedom on edges/faces with hanging nodes to keep continuity,which yield numerical computations much *** 2014,Zhao et al.(2014)presented quadrilateral constraint-free finite element methods on quadrilateral grids with hanging *** paper further develops a hexahedral constraint-free finite element method on hexahedral grids with hanging nodes,which is of greater challenge than the two-dimensional ***-based a posteriori error reliability and efficiency are also established in this paper.