版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:School of Water Resources and Numerical Simulation Huazhong University of Science and Technology Wuhan 430074ChinaState Key Laboratory of Water Resource and Hydropower Engineering Sciences Wuhan University Wuhan 430070China
出 版 物:《Journal of Wuhan University of Technology(Materials Science)》 (武汉理工大学学报(材料科学英文版))
年 卷 期:2006年第21卷第4期
页 面:158-162页
核心收录:
学科分类:080802[工学-电力系统及其自动化] 0808[工学-电气工程] 08[工学]
基 金:Funded by the National Natural Science Foundation of China(No.50539010)
主 题:mineral admixtures pozzalanic capacity early age electrical resistivity cementbased composites
摘 要:A non-contacting electrical resistivity measurement device was used to investigate the effect of different types and contents of mineral admixtures on the hydration perfrormanee of mortars during early age. The experimental results show that the changes of measured resistivity with time of hydration can be used to describe the hydration characteristics of cement-based materials, as well as the physical and chemical behavior of fly ash; blast furnace slag and silica fume at the very early ages. With an increasing replacement ratio of mineral admixtures, for the specimens blended with fly ash or slag, the resistivity increases firstly, then the following flatting period extends and after setting the resistivity increasing becomes slow and consequently a lower resistivity value at 24 hours occurs. This is due to the dilution effect and lower pozzolanicl hydraulic activity of fly ash and slag. However, for the samples incorporated with silica fume, the resistivity value through 24 hours is lower with shorter flatting period and larger slope in the resistivity curves, which is because of its particle size effect and higher pozzolanic activity of silica fume. Moreover, non-contacting resistivity measurement might provide a helpful information to predict the long term performanee including the durability of cement-based materials at early ages.