版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Ctr Nazl Terremoti Ist Nazl Geofis & Vulcanol Rome Italy Univ Nacl Colombia Escuela Estadist Medellin Colombia Univ Jaume 1 Dept Matemat Castellon de La Plana Spain Univ Palermo Dipartimento Sci Econ Aziendali & Stat I-90128 Palermo Italy
出 版 物:《ENVIRONMETRICS》 (环境计量学)
年 卷 期:2020年第31卷第2期
页 面:e2599-e2599页
核心收录:
学科分类:0830[工学-环境科学与工程(可授工学、理学、农学学位)] 08[工学] 0714[理学-统计学(可授理学、经济学学位)] 0701[理学-数学]
基 金:Italian Ministry of Education University and Research (MIUR) Universidad Nacional de Colombia, Hermes projects
主 题:clutter earthquakes EM algorithm features mixtures nearest-neighbor distances spatio-temporal point patterns
摘 要:We consider the problem of detection of features in the presence of clutter for spatio-temporal point patterns. In previous studies, related to the spatial context, Kth nearest-neighbor distances to classify points between clutter and features. In particular, a mixture of distributions whose parameters were estimated using an expectation-maximization algorithm. This paper extends this methodology to the spatio-temporal context by considering the properties of the spatio-temporal Kth nearest-neighbor distances. For this purpose, we make use of a couple of spatio-temporal distances, which are based on the Euclidean and the maximum norms. We show close forms for the probability distributions of such Kth nearest-neighbor distances and present an intensive simulation study together with an application to earthquakes.